From DaphneWiki

Jump to: navigation, search


Power supply


After inspecting the schematics and the PCB itself, the -5V rail appears to only be used by 9J (SN75188N) to be the low signal for the serial port. Therefore, it probably doesn't need much current. Substituting with -12V may work, although it might strain the capacitors.


The 16V rail appears to be used only by the audio amplifier. I did a visual inspection of the PCB to confirm this.

The audio amplifiers are MB3730 and have a max VCC voltage of 18V. It is designed to be powered by anything between 8V and 16V. So perhaps the audio amps could be powered by 12V instead of 16V and still work.

Sync signals

Sync Generation

Video sync signals are generated by what appears to be a custom Sony chip called the CX 773A (I couldn't find any info about this by googling for it). The chip itself is labeled as "SONY 773A 3A" with "001" at the bottom. You can find it on the Bega's Battle schematic called "DSP Control Decode" and it is at position 16K on the VDO-1 (bottom) PCB (the one with the two BNC outputs).

This custom IC takes in a 14.3182 MHZ clock and five of its output are used. Exact clock frequency is 315/22 (see )

Pin Description Notes
4 Composite Sync Active low. Typical NTSC composite sync. Nothing unusual observed.
6 SG BLK Active low. May refer to "signal block" meaning when to prevent computer generated video from going to the monitor. For top field, starts at beginning of line 1 and ends when line 21 begins, and otherwise goes low when HSync goes low (and lasts a little bit longer than HSync pulses).
8 HSYNC 2 Active low. Appears to run at a constant 15.73 kHz frequency with no variation. Each line is 63.56 uS long. Each pulse lasts for 6.72 uS. Usually starts a little before csync and ends a little after. Goes low at the same time as SG BLK.
11 VSYNC 2 Active low. For top field, starts at the beginning of line 1 and ends at the end of line 9. No apparent delay relative to csync. Each pulse lasts for 0.5721 ms and the frequency is a constant 59.93 Hz, with a period of 16.69 ms.
15 SC Stands for Sub-Carrier. Matches the color burst frequency. Runs at 3.58 MHz.

NTSC composite signal notes

Color burst is 3.58 MHz and should last for 9 cycles. Wave shape is sine wave. Its range should be +/- 20 IRE which, if the video signal is 1Vp-p, means going from -142.857 mV to 142.857 mV . To verify, divide 20*1000/140 according to this page:

IRE for an NTSC signal can be derived by measuring voltage depth of HSYNC (or VSYNC) pulse. Said depth will be 40 IRE. The full range of the composite signal is 140 IRE.

Genlock / PLL stuff for color burst

( MC1378P and MC44144 mentioned, both out of production)

Page about color burst PLL:

Techniques for converting analog sine wave into square wave:

Spartan 3E docs that include info about clocks:

Chroma Board

Signals from VDO-1 (bottom) PCB that are sent to Chroma board

CN2 Pin from VDO-1 (bottom) PCB CN1 Pin on Chroma PCB Description
B3 2 12V
A5 3 5V
B5 3 5V
A7 9 Analog red
B7 4 DSP Sel (I assume this means whether to display laserdisc video or computer generated video)
A8 8 Analog green
B8 5 SUB PC BLKING aka BL (related to SG BLK)
A9 7 Analog blue
B9 6 csync
A10 1 Ground
B10 10 Ground

Other stuff the chroma board may use

Lock Pulse from player: According to LDP-1000A manual, this is used to superimpose graphics over the player's image. The chroma board apparently makes use of it.

BNC output voltage levels

BegasBattleBNCOutputs 1SC 2CSync-1.png

Sub carrier

Yellow is Sub-Carrier (color burst).

Input specs say signal may be 2V(p-p) +/- 0.5V(p-p) 75 ohm

Composite sync

Blue is composite sync. Blue averages about 2.4V high.

Input specs say signal may be 4V(p-p) +/- 1V(p-p) 75 ohm

Serial I/O


CN2 Pin from VDO-2 (top) PCB Name Notes
A2 RxD Incoming
A3 TxD Outgoing, +12V to -5V (apparently)
A4 CTS ? Tied to A5.
A5 RTS ? Tied to A4
A6 DTR ? 12V through 1k resistor
A7 Signal ground? GND
A8 Not connected?

UART (17F / MC68B50P)

Pin Name Notes
2 Rx Data
3 Rx Clock Tied to 16D-12
4 Tx clock Tied to 16D-12
5 RTS' Not connected
6 Tx Data To 9J-2
7 IRQ' To main CPU IRQ (I think?)
8 CS0 To 5V
9 CS2' To 14E-9
10 CS1 To 5V? (schematic hard to read)
11 RS Tied to an address bus line
12 VCC To 5V
13 R/W' To CPU R/W' it appears
14 E (Enable) to something related to main CPU
15-22 D7-D0 Data bus
23 DCD' Tied to GND
24 CTS' Tied to GND
Personal tools